<i id="nv7tf"><i id="nv7tf"><noframes id="nv7tf"><video id="nv7tf"><i id="nv7tf"><meter id="nv7tf"></meter></i></video><i id="nv7tf"></i><nobr id="nv7tf"><dl id="nv7tf"></dl></nobr>
<i id="nv7tf"></i><dl id="nv7tf"><noframes id="nv7tf"><i id="nv7tf"></i>
<dl id="nv7tf"></dl>
<video id="nv7tf"></video>
<video id="nv7tf"></video>
<dl id="nv7tf"></dl><dl id="nv7tf"><delect id="nv7tf"></delect></dl><video id="nv7tf"><i id="nv7tf"></i></video><video id="nv7tf"><dl id="nv7tf"><delect id="nv7tf"></delect></dl></video><dl id="nv7tf"></dl><video id="nv7tf"></video>
<video id="nv7tf"></video><dl id="nv7tf"></dl><dl id="nv7tf"></dl><dl id="nv7tf"></dl><video id="nv7tf"><i id="nv7tf"></i></video><noframes id="nv7tf"><dl id="nv7tf"></dl><video id="nv7tf"></video>
<dl id="nv7tf"></dl><video id="nv7tf"><i id="nv7tf"></i></video><dl id="nv7tf"><i id="nv7tf"><font id="nv7tf"></font></i></dl>
<video id="nv7tf"></video><video id="nv7tf"><i id="nv7tf"><font id="nv7tf"></font></i></video>
<dl id="nv7tf"><delect id="nv7tf"><meter id="nv7tf"></meter></delect></dl><dl id="nv7tf"></dl><dl id="nv7tf"><i id="nv7tf"></i></dl>
<video id="nv7tf"></video><video id="nv7tf"></video><video id="nv7tf"><i id="nv7tf"><delect id="nv7tf"></delect></i></video><video id="nv7tf"></video>

行星輪油膜浮動均載理論

2014-08-02 20:33 作者:管理員11 來源:未知 瀏覽: 字號:

摘要:油膜浮動調位均載方法是行星輪調位均載方法中的最佳方法。它更具有結構簡單緊湊、重量輕、效率高(雙級效率超過0.96)、成本低、安裝方便、減振性能好、工作平穩、均載效果好等優點。 1)行星軸載荷與行星輪嚙合齒面的浮動值的關系 由于行星架上行星軸孔分度誤

    油膜浮動調位均載方法是行星輪調位均載方法中的最佳方法。它更具有結構簡單緊湊、重量輕、效率高(雙級效率超過0.96)、成本低、安裝方便、減振性能好、工作平穩、均載效果好等優點。
    1)行星軸載荷與行星輪嚙合齒面的浮動值的關系 由于行星架上行星軸孔分度誤差的切向分量和行星輪的偏心誤差嚴重影響均載,故首先研究上述誤差與行星軸載荷之間的關系。
    設靜載荷作用下的無限寬滑動軸承基本方程式適用于本情況,則按雷諾方程式可得


行星輪中心移動軌跡


    2)安裝中間輪可以增加行星輪的浮動量 將滑動軸承的理論用于解決中間輪與行星輪之間的相對運動,分析行星輪的浮動量,現將軸承體回轉與不回轉的兩種工作狀態進行對比,圖9.2-10中a、b兩圖分別為軸承體不轉和回轉兩種工作狀態,前者稱為一般滑動軸承,后者稱為共轉軸承(即將中間輪理解為軸承)。
兩種軸承工作狀態




(責任編輯:laugh521521)
文章分享:

標簽:
版權所有: 非特殊聲明均為本站原創文章,轉載請注明出處: 三暉機械科技
欧美 偷窥 清纯 综合图区|欧美丰满大乳大屁股流白浆|337p日本大胆欧美人术|国产日韩在线时看高清视频|久久精品aⅴ无码
<i id="nv7tf"><i id="nv7tf"><noframes id="nv7tf"><video id="nv7tf"><i id="nv7tf"><meter id="nv7tf"></meter></i></video><i id="nv7tf"></i><nobr id="nv7tf"><dl id="nv7tf"></dl></nobr>
<i id="nv7tf"></i><dl id="nv7tf"><noframes id="nv7tf"><i id="nv7tf"></i>
<dl id="nv7tf"></dl>
<video id="nv7tf"></video>
<video id="nv7tf"></video>
<dl id="nv7tf"></dl><dl id="nv7tf"><delect id="nv7tf"></delect></dl><video id="nv7tf"><i id="nv7tf"></i></video><video id="nv7tf"><dl id="nv7tf"><delect id="nv7tf"></delect></dl></video><dl id="nv7tf"></dl><video id="nv7tf"></video>
<video id="nv7tf"></video><dl id="nv7tf"></dl><dl id="nv7tf"></dl><dl id="nv7tf"></dl><video id="nv7tf"><i id="nv7tf"></i></video><noframes id="nv7tf"><dl id="nv7tf"></dl><video id="nv7tf"></video>
<dl id="nv7tf"></dl><video id="nv7tf"><i id="nv7tf"></i></video><dl id="nv7tf"><i id="nv7tf"><font id="nv7tf"></font></i></dl>
<video id="nv7tf"></video><video id="nv7tf"><i id="nv7tf"><font id="nv7tf"></font></i></video>
<dl id="nv7tf"><delect id="nv7tf"><meter id="nv7tf"></meter></delect></dl><dl id="nv7tf"></dl><dl id="nv7tf"><i id="nv7tf"></i></dl>
<video id="nv7tf"></video><video id="nv7tf"></video><video id="nv7tf"><i id="nv7tf"><delect id="nv7tf"></delect></i></video><video id="nv7tf"></video>