<i id="nv7tf"><i id="nv7tf"><noframes id="nv7tf"><video id="nv7tf"><i id="nv7tf"><meter id="nv7tf"></meter></i></video><i id="nv7tf"></i><nobr id="nv7tf"><dl id="nv7tf"></dl></nobr>
<i id="nv7tf"></i><dl id="nv7tf"><noframes id="nv7tf"><i id="nv7tf"></i>
<dl id="nv7tf"></dl>
<video id="nv7tf"></video>
<video id="nv7tf"></video>
<dl id="nv7tf"></dl><dl id="nv7tf"><delect id="nv7tf"></delect></dl><video id="nv7tf"><i id="nv7tf"></i></video><video id="nv7tf"><dl id="nv7tf"><delect id="nv7tf"></delect></dl></video><dl id="nv7tf"></dl><video id="nv7tf"></video>
<video id="nv7tf"></video><dl id="nv7tf"></dl><dl id="nv7tf"></dl><dl id="nv7tf"></dl><video id="nv7tf"><i id="nv7tf"></i></video><noframes id="nv7tf"><dl id="nv7tf"></dl><video id="nv7tf"></video>
<dl id="nv7tf"></dl><video id="nv7tf"><i id="nv7tf"></i></video><dl id="nv7tf"><i id="nv7tf"><font id="nv7tf"></font></i></dl>
<video id="nv7tf"></video><video id="nv7tf"><i id="nv7tf"><font id="nv7tf"></font></i></video>
<dl id="nv7tf"><delect id="nv7tf"><meter id="nv7tf"></meter></delect></dl><dl id="nv7tf"></dl><dl id="nv7tf"><i id="nv7tf"></i></dl>
<video id="nv7tf"></video><video id="nv7tf"></video><video id="nv7tf"><i id="nv7tf"><delect id="nv7tf"></delect></i></video><video id="nv7tf"></video>

微分公式

2013-07-24 13:29 作者:admin 來源:未知 瀏覽: 字號:

摘要:3.微分 3.1特殊極限值 3.2導數 3.2.1 導數符號 3.2.2求導法則 3.2.3基本導數會式(見表1.3-8) 3.2.4簡單函數的高階導數公式(見表1.3-9) 3.3泰勒公式和馬克勞林公式 l)泰勒公式 2)馬克勞林公式 在泰勒公式中,取a=O有 3.4曲線性狀的導數特征(見表1.3-10) 3.5曲

3.微分
3.1特殊極限值
特殊極限值
3.2導數
3.2.1 導數符號
導數公式
導數符號
3.2.2求導法則
求導法則
求導法則 公式
3.2.3基本導數會式(見表1.3-8)
基本導數公式
3.2.4簡單函數的高階導數公式(見表1.3-9)
簡單函數的高階導數公式
3.3泰勒公式和馬克勞林公式
    l)泰勒公式
泰勒公式

2)馬克勞林公式
在泰勒公式中,取a=O有
馬克勞林公式
3.4曲線性狀的導數特征(見表1.3-10)
曲線性狀的導數特征
曲線性狀的導數特征續表1
曲線性狀的導數特征續表2
3.5曲率和曲率中心
曲率
曲率和曲率中心
3.6曲線的切線和法線(見表1.3-11)
切線和法線方程
3.7常用曲線(見表1.3-12)
常用曲線
常用曲線續表2
常用曲線續表3

常用曲線續表4



 

(責任編輯:laugh521521)
文章分享:

標簽:微分公式
版權所有: 非特殊聲明均為本站原創文章,轉載請注明出處: 三暉機械科技
欧美 偷窥 清纯 综合图区|欧美丰满大乳大屁股流白浆|337p日本大胆欧美人术|国产日韩在线时看高清视频|久久精品aⅴ无码
<i id="nv7tf"><i id="nv7tf"><noframes id="nv7tf"><video id="nv7tf"><i id="nv7tf"><meter id="nv7tf"></meter></i></video><i id="nv7tf"></i><nobr id="nv7tf"><dl id="nv7tf"></dl></nobr>
<i id="nv7tf"></i><dl id="nv7tf"><noframes id="nv7tf"><i id="nv7tf"></i>
<dl id="nv7tf"></dl>
<video id="nv7tf"></video>
<video id="nv7tf"></video>
<dl id="nv7tf"></dl><dl id="nv7tf"><delect id="nv7tf"></delect></dl><video id="nv7tf"><i id="nv7tf"></i></video><video id="nv7tf"><dl id="nv7tf"><delect id="nv7tf"></delect></dl></video><dl id="nv7tf"></dl><video id="nv7tf"></video>
<video id="nv7tf"></video><dl id="nv7tf"></dl><dl id="nv7tf"></dl><dl id="nv7tf"></dl><video id="nv7tf"><i id="nv7tf"></i></video><noframes id="nv7tf"><dl id="nv7tf"></dl><video id="nv7tf"></video>
<dl id="nv7tf"></dl><video id="nv7tf"><i id="nv7tf"></i></video><dl id="nv7tf"><i id="nv7tf"><font id="nv7tf"></font></i></dl>
<video id="nv7tf"></video><video id="nv7tf"><i id="nv7tf"><font id="nv7tf"></font></i></video>
<dl id="nv7tf"><delect id="nv7tf"><meter id="nv7tf"></meter></delect></dl><dl id="nv7tf"></dl><dl id="nv7tf"><i id="nv7tf"></i></dl>
<video id="nv7tf"></video><video id="nv7tf"></video><video id="nv7tf"><i id="nv7tf"><delect id="nv7tf"></delect></i></video><video id="nv7tf"></video>